Es mostren les entrades ordenades per rellevància per a la consulta genetic testing. Ordena per data Mostra totes les entrades
Es mostren les entrades ordenades per rellevància per a la consulta genetic testing. Ordena per data Mostra totes les entrades

22 de novembre 2020

The time to stop recreational testing has come

 Direct-to-Consumer Genetic Testing: Value and Risk

Piecing together information from a variety of sources, one reporter concluded that by early 2019, more than 26 million people worldwide had been tested by the four leading companies, 23andMe, Ancestry, Gene By Gene, and MyHeritage (1). That volume was fueled by aggressive marketing, including discounts in the lead-up to major holidays to promote gifting of test kits. As of May 2020, the  undiscounted price of the basic test offered by the leading companies was $59–$99.

This is an example of what should not had happened. Recreative genomics doesn't add value and increases uncertainty and anxiety. 

Although many consumers of DTCgenetic testing express an intention to modify their lifestyle to address risk factors, studies typically show no changes at follow-up (15, 30). In the PGen Study, 59% of participants said that test results would influence their management of their health (31). However, an analysis of the 762 participants who had complete cancer-related data found that those who received elevated risk estimates were not significantly more likely to change lifestyle or engage in cancer screening than those who received average or below-average risk estimates (44). It may be relevant that no participants tested positive for pathogenic variants in highly penetrant cancer susceptibility genes. As for population health, the Centers for Disease Control and Prevention identify three conditions—hereditary breast and ovarian cancer syndrome,Lynch syndrome, and familial hypercholesterolemia—that are poorly ascertained despite the potential for early detection and intervention to significantly reduce morbidity and mortality (45). The hope is that DTC genetic testing could improve the situation (15). However,DTC genetic testing as currently carried out is likely to fill gaps in haphazard fashion, given the characteristics of purchasers, the scope of available products, and integration issues.

One message. Right now and until we don't know the implications of recreational genetic testing, direct to consumers testing should stop.


Banksy

 

07 d’abril 2017

When science and regulation don't talk to each other

An Evidence Framework for Genetic Testing

National Academy of Sciences and Food and Drug Administration don't talk to each other. At the same time that NASEM publishes a report on how to assess genetic testingFDA clears genetic testing for 23andme without any precise assessment, for the following tests:

  • Parkinson’s disease, a nervous system disorder impacting movement
  • Late-onset Alzheimer’s disease, a progressive brain disorder that destroys memory and thinking skills
  • Celiac disease, a disorder resulting in the inability to digest gluten
  • Alpha-1 antitrypsin deficiency, a disorder that raises the risk of lung and liver disease
  • Early-onset primary dystonia, a movement disorder involving involuntary muscle contractions and other uncontrolled movements
  • Factor XI deficiency, a blood clotting disorder
  • Gaucher disease type 1, an organ and tissue disorder
  • Glucose-6-Phosphate Dehydrogenase deficiency, also known as G6PD, a red blood cell condition
  • Hereditary hemochromatosis, an iron overload disorder
  • Hereditary thrombophilia, a blood clot disorder
Meanwhile NASEM recommends a decision framework for the use of genetic tests in clinical care:
1. Define genetic test scenarios on the basis of the clinical setting, the purpose of the test, the population, the outcomes of interest, and comparablealternative methods.
2. For each genetic test scenario, conduct an initial structured assessment to determine whether the test should be covered, denied, or subject to additional evaluation.
3. Conduct or support evidence-based systematic reviews for genetic test scenarios that require additional evaluation.
4. Conduct or support a structured decision process to produce clinical guidance for a genetic test scenario.
5. Publicly share resulting decisions and justification about evaluated genetic test scenarios, and retain decisions in a repository.
6. Implement timely review and revision of decisions on the basis of new data.
7. Identify evidence gaps to be addressed by research.
If you want further details, check Mathew Herper blog. My first impression after reading it is that this move, paves the way for recreational genetic testing. An approach that should be completely banned by legislation. If FDA has done so, let's wait for what it may happen in Europe where the regulator is still planning a change of the regulation in 2022!!! Meanwhile, the door is open (to the worst for citizens).



18 de setembre 2016

The anxiety of inaccuracy

Conflicting Interpretation of Genetic Variants and Cancer Risk by Commercial Laboratories as Assessed by the Prospective Registry of Multiplex Testing

What happens if "one quarter of the clinical genetic results from commercially available multiplex cancer panels and reported at the PROMPT registry had conflicting interpretations" and if "36% of conflicting genetic tests results appeared to be clinically relevant, because they were either reported as pathogenic/likely pathogenic"? Does anybody care about it?.
I would suggest today you have a look at this article and your level of anxiety will increase suddenly.
Clinical data and genetic testing results were gathered from1,191 individuals tested for inherited cancer susceptibility and self-enrolled in PROMPT between September 2014 and October 2015. Overall,participants (603 genetic variants) had a result interpreted by more than one laboratory, including at least one submitted to ClinVar, and these were used as the final cohort for the current analysis.

Of the 603 variants, 221 (37%) were classified as a variant of uncertain significance (VUS), 191 (32%) as pathogenic, and 34 (6%) as benign. The interpretation differed among reporting laboratories for 155 (26%). Conflicting interpretations were most frequently reported for CHEK2 and ATM, followed by RAD51C, PALB2, BARD1, NBN, and BRIP1. Among all participants, 56 of 518 (11%) had a variant with conflicting interpretations ranging from pathogenic/likely pathogenic to VUS, a discrepancy that may alter medical management.
Therefore, 
Clinical interpretation of genetic testing for increased cancer susceptibility as assessed by multiplex panels hinges on accurate curation and interpretation of variants. Discrepant interpretation of some genetic variants appears to be common.
Take care. The regulator remains on vacation, a never ending vacation.

PS. On genetic testing 

12 de desembre 2021

The value of direct-to-consumer tests

 Direct-to-Consumer Tests on the Market Today. Identifying Valuable Tests from Those with Limited Utility

For health care professionals, the analytical validity of DTC tests is a primary concern. Analytical validity of DTC genetic testing can be defined by analytical sensitivity and specificity whereby analytical sensitivity is defined as how often a test is positive when the genetic variant of interest is present in the tested sample, and the analytical specificity is defined as how often a test result is negative when the tested sample does not contain the genetic variant of interest.18 A recent study by Tandy-Connor and colleagues19 “indicated that 40% of variants in a variety of genes reported in DTC raw data were false positives” when compared with clinical confirmatory testing. This study highlights the need to scrutinize the analytical validity of DTC genetic testing and consider confirmatory testing in a clinical diagnostic genetics laboratory. 

Per the American Society of Human Genetics, “companies offering DTC genetic testing should disclose the sensitivity, specificity and predictive value of the test, and the populations for the information is known, in a readily understandable and accessible fashion.”

Unfortunately, nobody cares about it, and the regulator is still on vacation.



17 de gener 2011

DTC

Direct-to-Consumer Genetic Testing: Summary of a Workshop
Aquestes tres sigles potser d'entrada no us diuen res, però al darrera hi ha una polèmica considerable. "Direct to Consumer" es refereix sobretot en aquest moment a les proves genètiques. Els llibres de IOM-NAP ajuden a comprendre la realitat de la medicina i un de darrer va sobre proves genètiques.
El repàs als temes clau que deixa oberts és gran. Em centro en un que està sorgint aquí aprop com un bolet: el consell genètic. I què és això?
The process of helping people understand and adapt to the medical, psychological, and familial implications of genetic contributions to disease.” Counselors interpret family and medical histories; educate clients about inheritance, testing, management, prevention, resources and research; and counsel them to promote informed choices and adaptation to the risk or condition.
I sobre DTC assenyala:
Some DTC genetic testing companies offer genetic counseling—via telephone or the Internet, or sometimes in person—as part of their testing services. Some have counselors on staff, and others contract with specific counselors and refer clients to them. And at least one charges its customers for the service—$250 per hour.20 Several DTC testing companies currently offer genetic counseling services to their customers at no additional charge, so there is no cost barrier. It appears, however, that clients often are not aware that these services are available—or even what genetic counseling is—and thus do not always benefit from
them
Una mica d'ordre a les idees convé quan s'està en un moment emergent. Si qui ven la prova fa el consell genètic, ja tenim la demanda induïda. Si creem unitats de consell genètic, l'oferta crea demanda. Ara i aquí, és l'hora de la planificació, o potser hem fet tard?

23 de desembre 2014

European health regulator on holiday

After Canada, the first european country that has allowed recreational genetic testing is UK. Some weeks ago the Ethics Research Committee approved the commercialisation of 23andme test that provides 100 genetic reports. Wired says:
The £125 spit test kit is not a diagnostic test, but instead identifies genes that are associated with inherited conditions including cystic fibrosis, Alzheimer's disease, Parkinson's disease and sickle cell anaemia. It's not just health information that can be discovered within the results of the test though -- there is also the opportunity for customers to learn more about their inherited traits and genetic ancestry.
Why has the UK approved it and the FDA has restricted the same test in the US?.  Some months ago I explained that european legislation was outdated. Now the genetic testing firm has profited from bad regulation to enter into european market with CE mark. Does anybody know where the regulator is spending their holiday?

PS. While being  so easy to regulate recreational genetic testing under current false advertising rules, why is only the US doing that?. You should know that closer than you think similar tests are available for you. Where is the catalan health regulator?

PS. Why is the tax regulator not on vacation?

Emile Claire Barlow - Jardin d'Hiver

25 de febrer 2014

The hole for genetic testing market entry

Technology Assessment on Genetic Testing or Molecular Pathology Testing of Cancers with Unknown Primary Site to Determine Origin
Update on Emerging Genetic Tests Currently Available for Clinical Use in Common Cancers

AHRQ has just published two reports of interest. The first is devoted  to assess the evidence on the analytical validity, clinical validity, and clinical utility of commercially available genetic tests for identifying the tissue of origin (TOO) of the cancer in patients with cancer of unknown primary (CUP) site. The second describes genetic tests that have applications in the common solid tumors (breast, lung, colorectal, pancreas, etc.) as well as tests that are used in hematologic cancers (leukemia, lymphoma) and are already available in clinical practice.While the first is an assessment, the second is informative.
There is still a third report to be released and meanwhile NRD explains its conclusions. Having selected 11 prognostic tests, only around half had evidence supporting their prognostic accuracy or clinical validity. Therefore the question is always the same: why these tests without evidence are on the market? Why have they been approved by the FDA?. There is a big regulatory hole to fill in.

11 de març 2015

Genetic testing: a knotty problem

Food and Drug Administration. Optimizing FDA's regulatory oversight of next generation sequencing diagnostic tests — preliminary discussion paper

Cutting the Gordian Helix — Regulating Genomic Testing in the Era of Precision Medicine

"Scientific progress alone won't guarantee that the public reaps the full benefits of precision medicine, an achievement that will also require advancing the nation's regulatory frameworks"
This strong statement reflects a wider concern on the implementation of precision medicine or stratified medicine. I have commented before on this issue, the NEJM article of this week clarifies the last attempt by FDA to shed some light and a specific approach to disentangle the current challenges. FDA has submitted a document for comments just to start a new era of regulation in health, a "collaborative framework" for creating reliable databases of genes and genetic variants underlying disease, and provide a "safe harbor" for the interpretation of genomic tests.
This is exactly the right direction. As long as, information is a public good, genetic testing -clinical validity and utility- should be provided only by the regulator.  Professionals and citizens need to trust in precision medicine and avoid snake-oil sellers.
Having said that, today I'm more concerned than yesterday on how our government is delaying to start such effort. Today is one more day lost.

Dufy at Thyssen Museum right now

PS. Somebody should think twice about the style of health policy debates in public TV.

14 de desembre 2017

The urgent need to define delivery models for genetic testing

Identification of Delivery Models for the Provision of Predictive Genetic testing in Europe: Protocol for a Multicentre Qualitative study and a systematic review of the literature

The increasing role of genomics in medical decision making requires a review on how services should be organised. Unless this effort is taken promptly, it will be much more difficult to adapt the messy organization to an efficient model for the delivery of services. This issues are explained in a recent article. The ten questions:


 The transfer of genomic technologies from research to clinical application is influenced not only by several factors inherent to research goals and delivery of healthcare but also by external and commercial interests that may cause the premature introduction of genetic tests in the public or private sector (i.e., introduction of a test despite insufficient evidence regarding its analytical validity, clinical validity, and utility). Furthermore, current genetic services are delivered without a standardized set of process and outcome measures, which are essential for the evaluation of healthcare services. It is important that only genetic/genomic applications with proven efficacy and effectiveness are delivered to populations, and particularly that technologies have favorable cost-effectiveness ratios

26 de febrer 2015

Opening the door to recreational genetics testing

On February 19th, the US Food and Drug Administration (FDA) authorized 23andMe to market a direct-to-consumer (DTC) carrier test for Bloom syndrome. Such test was classified as a medical device, and exempting it from premarket review. This may pave the way for DTC genetic testing in the US market.
The decision to open door for one test may represent the biggest move towards a recreational genetic testing market. You know that from this blog I have backed a ban on developing such markets and the need for an effective regulatory review different from the flawed medical device system.
The european regulator is still on holiday, I said that some months ago and it is still "out".

PS. Variations in health care in GCS Blog.

10 de novembre 2018

Next generation sequencing is knocking at the door (and the door is open)

Genetic testing: Opportunities to unlock value in precision medicine
Next-Generation Sequencing to Diagnose Suspected Genetic Disorders
Documento de consenso sobre la implementación de la secuenciación masiva de nueva generación en el diagnóstico genético de la predisposición hereditaria al cáncer

This week I've been reading three pieces on the same topic. First, a McKinsey insight on genetic testing, second a NEJM basic article that reviews the whole state of the issue, and third a consensus by three societies on how to implement next generation sequencing .
All of them are required reading for anyone interested in the topic. You'll notice that technology is knocking at the door and we do need to understand how to manage it. Otherwise it will enter anyway (without knocking) and then it will be more value extraction (by others) than value creation (for patients).
Unfortunately, what you'll not find in these articles is how to manage the introduction of the technology with organizational patterns, allocation and coordination of tasks and decisions. If you want some clues on this, read my previous post on Geisinger, they are applying what it seems to me the most appropriate perspective.


Sense Sal-Fins que surti el sol

15 de novembre 2010

La petja que traginem

A Survey of UK Public Interest in Internet-Based Personal Genome Testing 

The Behavioral Response to Personalized Genetic Information:Will Genetic Risk Profiles Motivate Individuals and Families to Choose More Healthful Behaviors?


L'interès per la informació genòmica creix, però ja va sent hora de preguntar-se si serveix. Dues publicacions han analitzat quina és l'actitud envers aquestes proves i si això els faria canviar el seus hàbits de salut. Al Plos One trobareu l'article. Un resum en un paràgraf:
One in twenty participants (5%) were potentially interested at current prices (£250), however this proportion rose to half (50%) if the test was free of charge. Nearly all respondents who were interested in free PGT reported they would take the test to encourage them to adopt a healthier lifestyle if found to be at high genetic risk of a disease (93%). Around 4 in 5 respondents would have the test to convey genetic risk information to their children and a similar proportion felt that having a PGT would enable their doctor to monitor their health more closely.
I a l'Annual Review of Public Health, un altre:
To conclude, personalized genetic information has its greatest impact on behavior when disease risks are appreciable. Genetic information based on single-gene variants with low risk  probabilities has little impact—either positive or negative—on emotions, cognitions, or behavior. The difficulty of health behavior change, the rapid pace of technology in the areas of genetics (68), environmental assessment (20), and communication modalities (65) suggest the need to accelerate research in evaluating whether new understandings of genetic risk can favorably influence health behavior,
 Ja cal que augmentem l'esforç per a comprendre com l'allau de noves tecnologies tindran un impacte en la salut. L'impacte en el cost ja podem anar descomptant-lo (si és que el podem pagar algun dia).

05 de febrer 2021

Clinical utility of genetic testing for breast cancer

 Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women

Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking.

However,

 We found strong evidence of an association with breast cancer risk (Bayesian false-discovery probability, <0.05) for protein-truncating variants in 9 genes, with a P value of less than 0.0001 for 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) and a P value of less than 0.05 for the other 4 genes (BARD1, RAD51C, RAD51D, and TP53).

  None of the other 25 genes in the panel had a Bayesian false-discovery probability of less than 0.10. Of note, 19 genes had an upper limit of the 95% confidence interval of the odds ratio of less than 2.0, with 2.0 representing a proposed threshold for “pathogenic, moderate risk alleles”9; we therefore conclude that these genes are not informative for the prediction of breast cancer risk. We confirmed that missense variants in BRCA1, BRCA2, and TP53 that would be classified as pathogenic according to clinical guidelines are indeed associated with clinically significant risks. We also found that rare missense variants in CHEK2 overall, as well as variants in specific domains in ATM, are associated with moderate risk.

The summary:

 Variants in 8 genes — BRCA1, BRCA2, PALB2, BARD1, RAD51C, RAD51D, ATM, and CHEK2 — had a significant association with breast cancer risk.

 

26 de setembre 2013

For another day

The Actress, the Court, and What Needs to Be Done to Guarantee the Future of Clinical Genomics

The introduction of new technologies and benefits in health care is always a perfect chaotic process. It starts with the creation of great expectations that have to be fulfilled (and publicly funded!). In some sense it could be understood as a remake of the Nintendo story of undersupply and artificial scarcity creation. Some genome based biomarkers fits partly with this paradigm.
The case of Angeline Jolie -double mastectomy after BRCA testing positive- was broadcasted worldwide in the weeks before the ruling against gene patenting. Creating uncertainty and scarcity artificially is a heavier combination. And in this situations is when common good has to be protected, and government has the key role.
Two selected messages from this week in PLOS Biology:
If clinical genomics is about to move forward at a more rapid pace due to broader public awareness and a more favorable legal climate then there is still work to be done on the ethical, regulatory, and legal fronts.

Celebrities are now drawing public attention to the utility of genetic testing. With the Supreme Court decision opening the door to more and perhaps cheaper entry into the testing market, the requisite infrastructure for managing risk and the rules for handling risk information must be strengthened. Making testing more widely available will only be morally acceptable if there are rules of the road in place.
 Meanwhile, our regulator is just waiting for another day, then it may be too late.

Music video by Nikki Yanofsky performing For Another Day. 
(C) 2010 Decca Label Group

10 de maig 2013

Economics of genomics

The Economics of Genomic Medicine - Workshop Summary

Just imagine for a while that you are concerned about economic implications of genomics and you invite a distinguished professor of genetic medicine - James Evans- to the introduction of a workshop at IOM. Instead of more is better, he sends a cautious message to the audience. And beyond the potential and valuable applications for those that are already ill,  he openly critizises the current trend towards the use of genetic tests for the healthy:
Assessing the risk of common diseases through whole genome analysis of a healthy person has received the most attention, but this attention “is somewhat misplaced,” Evans said. Currently, assessment of genetic risk alleles has “rather feeble predictive power” because the increased risks tend to be small. “From a clinical standpoint I don’t know what to do with patients who are at a 1.3 relative risk for colon cancer,” said Evans. “Am I going to hurt them by doing more intensive screening, or am I going to help them?”
"I know what almost everybody in this room is going to die of,” said Evans. “We are going to die of heart disease or cancer. . . . We are all at high risk for these maladies regardless of our [genomically determined] risk. And many at decreased risk for heart disease will still die of heart disease. So we are all going to benefit from interventions that lower heart disease. We don’t really need to target people. It doesn’t do anyone much good to tweak our estimation of an individual’s relative risk for common diseases which we are all at high absolute risk of developing anyway."
 “The old adage that an elephant for a nickel is only a bargain if you have a nickel and you need an elephant applies here. I am not sure most of us need that elephant. Even if free, perceived low cost is an illusion, because the misapplication of medical tests—and make no mistake, whole genome sequencing is a medical test—is very expensive,”
A clear message for geneto-enthusiasts and marketeers. Cost-effectiveness of genetic testing starts with assessing if they are effective. If not, any economic analysis is useless . This is obvious, but we do need to repeat it, just in case.

PS. Must read, Reinhardt's blog.

PS. A report to understand the financial markets' mess and why recovery is far by now.

14 de març 2011

Veure-les passar

El tema segueix sobre la taula. El debat sobre les proves genètiques i com regular-les preocupa a la FDA i encara que ja ha dit que cal aplicar els mateixos criteris que als subministraments mèdics (medical devices), hi ha molts dubtes sobre els detalls.

Els de Genomics Law Report expliquen el que ha passat a les compareixences recents. Si n'esteu interessats feu-hi una ullada.
Les preguntes clau:
Should the agency require proof of analytical validity, clinical validity and/or clinical utility prior to approving a particular test and, if so, what standards of proof should be required?
Should the agency regulate tests SNP-by-SNP, claim-by-claim or test-by-test, and what should be done to prepare for the inevitable arrival of tests based on whole-genome sequence data?
Should the agency oversee the labeling and advertising claims offered by companies in association with such tests?
Should the agency require companies to collect and submit data regarding the post-test benefits and harms and the actual (as compared to intended) uses of their tests?
Should the agency impose requirements on companies to prevent unauthorized testing, protect data privacy and limit companies’ ability to share genetic information without their customers’ consent?

While these questions, and countless more, will be critical to the development of sensible genetic testing regulation, one question clearly generates more and more emotional responses than any other:

Should regulators require some or all genetic tests to be routed through a clinician, or should tests be made available directly to consumers who desire them?
I mentrestant per aquí, les veiem passar...i ens costen una pasta...

PD. El gran Ferran Torrent representa una alenada d'aire fresc els diumenges, tant en directe a Rac1 com els comentaris a ARA. Cita Josep Renau: "Quan arribes a València i et menges una paella o una sípia t'oblides de la lluita de classes". I mentrestant els de FT ens recorden que "Valencia is burning"

03 d’abril 2012

La capacitat predictiva de les proves genòmiques

Gene Maps Are No Cure-All

Les quatre característiques diferencials de les proves genòmiques es que són determinacions inespecífiques, d'alta validesa analítica, baixa validesa clínica i utilitat clínica problemàtica.  Això és el que ens explica un article a BMC Medical Ethics. I només a partir de la comprensió d'aquestes característiques es possible començar a parlar de les implicacions ètiques, legals i socials.
Doncs bé, avui llegia a WSJ la notícia sobre la baixa capacitat predictiva de les proves genòmiques completes (i per tant inespecífiques) a partir d'un estudi publicat a Science Translational Medicine, un contrast de la seva baixa validesa i utilitat clínica.
El resum diu:
New DNA sequencing methods will soon make it possible to identify all germline variants in any individual at a reasonable cost. However, the ability of whole-genome sequencing to predict predisposition to common diseases in the general population is unknown. To estimate this predictive capacity, we use the concept of a “genometype”. A specific genometype represents the genomes in the population conferring a specific level of genetic risk for a specified disease. Using this concept, we estimated the capacity of whole-genome sequencing to identify individuals at clinically significant risk for 24 different diseases. Our estimates were derived from the analysis of large numbers of monozygotic twin pairs; twins of a pair share the same genometype and therefore identical genetic risk factors. Our analyses indicate that: (i) for 23 of the 24 diseases, the majority of individuals will receive negative test results, (ii) these negative test results will, in general, not be very informative, as the risk of developing 19 of the 24 diseases in those who test negative will still be, at minimum, 50 - 80% of that in the general population, and (iii) on the positive side, in the best-case scenario more than 90% of tested individuals might be alerted to a clinically significant predisposition to at least one disease. These results have important implications for the valuation of genetic testing by industry, health insurance companies, public policy makers and consumers.
Està clar que només ens parla de la seqüenciació completa i la predisposició a 24 malalties. No es refereix a les proves dirigides a simptomes i malalties en concret. El tema és prou conegut, i n'he parlat en aquest blog. Encara no sé com pot ser notícia si no fos perquè això pot fer variar la valoració d'Illumina, que aquests dies vol ser comprada per 6.700 milions de dòlars i d'aquesta manera evitaria desembutxacar-se més doblers. Alguns inversors segurament pensen que aquesta tecnologia de seqüenciació completa del genoma individual l'encolomaran com predictiva malgrat no ho sigui i cal treure'n rendiment mentre el regulador segueixi de vacances. D'altres pensen que efectivament servirà per crear valor i millorar la salut.
De vegades penso que la dificultat resideix en el pànic que produeix un full en blanc a qui ha de posar-se a escriure. Aquest fet porta un dia a publicar una cosa i l'altre la contrària. Només el lector avesat en aquests afers sap comprendre quan l'estan engatussant. Ara bé, avui al WSJ han fet una cosa poc habitual que s'agraeix, mostren el finançament i conflictes d'interès dels autors de l'article a Science i diuen:
The new study was funded by the National Institutes of Health and a number of independent groups. Dr. Vogelstein and two co-authors are founders of Inostics and Personal Genome Diagnostics and own stock in the two gene-analysis companies.
Atès que la conclusió de l'article podria afectar negativament als drets residuals de propietat dels autors, ens trobem davant un cas singular de revelació de resultats negatius de recerca, fet altament inusual quan hi ha interessos pel mig.

07 de març 2014

Cost-effectiveness with uncertain effectiveness


Gene expression testing is quite different from genetic testing. Gene expression refers to epigenetic regulation of genes that occur without alteration of DNA. I've covered such topics several times in this blog. Today, I would like to focus on a recent published work on a new test  that assesses whether or not a patient's chest discomfort or other symptoms are due to obstructive coronary artery disease. Sounds interesting, since angiography is a costly technology.
A quick look at this recent article will raise new doubts. As you know, there is no need for cost-effectiveness analysis when effectiveness is uncertain. When talking about testing effectiveness means, sensitivity and specificity, AUC and so on. But what happens when the seller (or the model) decides about the threshold and afterwards focuses on negative predictive value of 96% and provides the desired value?. The threshold is only an option in the model. Why not change it?. There is a circular reasoning on that.
My concern is that health economics should look in detail at such issues. It is not an issue of conflicts of interest. In this case any health economist should avoid entering such territory.

01 de desembre 2021

Bioethics for lab medicine

 Ethics for Laboratory Medicine

Key issues:

Table 1.Ethical Issues of particular importance in Laboratory medicine.

Informed consent 

Use of leftover specimens 

Biobanking 

Genetic testing 

Equity and access to laboratory testing 

Incidental findings and medically actionable results 

DTC testing 

Transfusion medicine and religious or ethical restrictions 

Disclosing medical error 

Emerging infectious diseases 

Test utilization 

The unique role of laboratorians, who care for patients but interact mainly with their samples rather than the person, creates distinct ethical dilemmas. In addition, laboratories function as critical parts of complex health systems, and the interaction of the laboratory with the greater healthcare system creates additional points of ethical friction (45). Clinical laboratory professionals are ethically bound to use our voices to advocate for excellence in patient care in the realms of respect for persons, beneficence, and justice, even in the face of technological, administrative, and, perhaps, clinical pressures to do otherwise.

Ethics represents moral principles based on cultural norms and values. Sometimes these moral values have been turned into federal or state laws or into local rules and regulations. However, laws and rules may be absent or difficult to apply to a given situation. When faced with ethical decisions, laboratorians should seek the input from other clinicians and laboratory colleagues. In addition, most hospitals have ethics boards comprising multidisciplinary teams of clinicians, lay people, and clergy to help guide decision-making.



 

05 de març 2014

When asking your physician is not enough

23andMe and the FDA

Some weeks ago I explained the FDA "closure" of DTC genetic testing business. NEJM analyses with detail the rationale behind such policy:
The goal of the FDA and 23andMe (as well as all clinical geneticists, testing laboratories, and the entire genetics industry) should be to ensure that genomic information is both accurate and clinically useful. Clinicians will be central to helping consumer–patients use genomic information to make health decisions. Any regulatory regime must recognize this reality by doing more than simply adding the tagline on most consumer ads for prescription drugs: “Ask your physician.” That is insufficient guidance unless your physician has ready access to a clinical geneticist or genetic counselor.
European regulation is 15 years old and the new directive is still being discussed. It will not be applied for at least 3 years. Meanwhile, do you know who is protecting us from inaccurate and clinically useless information?