Es mostren les entrades ordenades per rellevància per a la consulta epigenome. Ordena per data Mostra totes les entrades
Es mostren les entrades ordenades per rellevància per a la consulta epigenome. Ordena per data Mostra totes les entrades

21 d’abril 2017

Approaching the golden age of epigenomics and epitranscriptomics

A new twist on epigenetics

If epigenomics is crucial to discard the genetic predestination paradigm, now we can add a new 'omics to the paradigm: epitranscriptomics. Last February, Nature published interesting news related to recent scientific developments:
The epigenome helps to explain how cells with identical DNA can develop into the multitude of specialized types that make up different tissues. The marks help cells in the heart, for example, maintain their identity and not turn into neurons or fat cells. Misplaced epigenetic marks are often found in cancerous cells.
 Chuan He and Tao Pan are two researchers that have been working on new ways of controlling gene expression
He and others have shown that a methyl group attached to adenine, one of the four bases in RNA, has crucial roles in cell differentiation, and may contribute to cancer, obesity and more. In 2015, He’s lab and two other teams uncovered the same chemical mark on adenine bases in DNA (methyl marks had previously been found only on cytosine), suggesting that the epigenome may be even richer than previously imagined.
The team had shown for the first time that RNA methylation was reversible, just like the marks found on DNA and histones.
Methylated adenine bases are the focus of research on gene expression.

09 d’abril 2018

Integrating genome and epigenome studies

The Key Role of Epigenetics in Human Disease Prevention and Mitigation

I've said it many times: beware of snake-oil sellers. Nowadays you may find it everywhere, specially on internet. You may get a genetic test for a disease that creates a false illusion of safety, or another that provides an unnecessary and avoidable concern. Only evidence based prescribed tests can be considered appropriate.
Therefore, if you want to confirm that genome is not enough, you have to check the review at NEJM on epigenetics. At the end of the article you'll find the explanation on why we do need integrated genome and epigenome association studies. You'll understand that cancer is fundamentally an epigenetic disease.
The current knowledge is changing quickly some conventional truths and "known unknowns" that we've had for years. This is good news for citizens, and bad news for snake-oil sellers if detected. Governments should help citizens on this screening effort, and protect citizens from fake medical information.




27 de juliol 2016

DNA methylation assays as epigenetic biomarkers

Quantitative comparison of DNA methylation assays for biomarker development and clinical applications

A new milestone has been achieved in Medicine. Tracking epigenetic alterations is crucial to understand a disease. However, epigenetic biomarkers are needed to assess such changes. Its precision (sensitivity-specifity) is  paramount for its clinical application. Now a group of international researchers has certified its performance (partially). Have a look at this Nature article:
Genome-wide mapping and analysis of DNA methylation has become feasible for patient cohorts with thousands of samples, and epigenome-wide association studies have been conducted for numerous biomedically relevant phenotypes. To translate relevant epigenome associations into clinically useful biomarkers, it is necessary to select a manageable set of highly informative genomic regions, to target these loci with DNA methylation assays that are sufficiently fast, cheap, robust and widely available to be useful for routine clinical diagnostics, and to confirm their predictive value in large validation cohorts.
Among its conclusions I would like to highlight three of them:
(i) Absolute DNA methylation assays are the method of choice when validating DNA methylation differences in large cohorts, and they are also an excellent technology for developing epigenetic biomarkers.
(ii) Relative DNA methylation assays are not a good replacement for absolute assays. However, experiences of scientists in the contributing laboratories suggest that carefully selected, designed and validated relative assays can cost-effectively detect minimal  races of methylated DNA against an excess of unmethylated DNA.
(iii) Global DNA methylation assays suffer from noisy data and divergent results between technologies. Locus-specific assays (possibly combined with prediction) provide a more robust alternative
That's it. Very soon will see the epigenetic biomarkers in routine clinical use. And afterwards,  epigenetic drugs and treatments. Then, we'll confirm that the promise of precision medicine is a reality. The implications for medicine as a scientific discipline and clinical decision making are huge, and specifically, healthcare organizations will need to adapt to new knowledge and technologies.

PS. Neuroepigenetics: DNA methylation and memory

02 de març 2015

Beyond the genome

FORUM Epigenomics. Roadmap for regulation. Diseases mapped

My suggestion for today. Have a look at the papers in Nature on epigenome, and at the following figure:

The Roadmap Epigenomics Project has produced reference epigenomes that provide information on key functional elements controlling gene expression in 127 human tissues and cell types, and encompassing embryonic and adult tissues, from healthy individuals and those with disease. a, Many of the adult tissues investigated were broken down by cell type or region — blood into several types of immune cell, for instance, and the brain into regions including the hippocampus and dorsolateral prefrontal cortex. Tissue samples and cells were subjected to a range of epigenomic analyses, along with genome sequencing and genome-wide association studies (GWAS). b, Embryonic stem (ES) cells, which are taken from the embryo at the 'blastocyst' stage and can give rise to almost every cell type in the body, were used to analyse, for example, the differentiation of stem cells into different neuronal lineages. The ES-cell-derived cell lines underwent the same epigenomic analyses as the tissue samples.

The key article, here.Tissues and cell types profiled:


For decades, biomedical science has focused on ways of identifying the genes that contribute to a particular trait, or phenotype. Approaches such as genome-wide association studies (GWAS) identify locations in thhuman genome at which variations in DNA sequence are linked to specific phenotypes, but if the variant is located in a region of DNA that does not encode a protein, such studies rarely provide insights into the regulatory mechanisms underlying the association. In these cases, comprehensive epigenomic analyses can provide the missing link between genomic variation and cellular phenotype.

If this is so, why are governments reluctant to introduce a ban on genetic tests with spurious associations between genome and diseases?




PS. Manel Esteller in DM.