Es mostren les entrades ordenades per data per a la consulta vertex. Ordena per rellevància Mostra totes les entrades
Es mostren les entrades ordenades per data per a la consulta vertex. Ordena per rellevància Mostra totes les entrades

22 d’abril 2025

Pharma, big pharma (26)

The Antidote: Inside the World of New Pharma

Llibre resumit amb IA.

El llibre "The Antidote: Inside the World of New Pharma" de Barry Werth ofereix una mirada detallada a l'evolució de l'empresa farmacèutica Vertex Pharmaceuticals, seguint la història narrada prèviament a l'aclamat llibre de Werth, "The Billion-Dollar Molecule".

Introducció i Orígens:

  • Vint anys després d'escriure sobre la fundació de Vertex, Werth torna per explicar la història completa d'aquesta empresa biotecnològica ambiciosa.
  • La idea fundacional de Vertex, liderada per joves científics emprenedors que van deixar una gran farmacèutica, era dissenyar millors fàrmacs àtom per àtom.
  • Molts a la indústria consideraven aquest projecte, que va començar en un garatge, com una utopia.
  • El primer llibre es va centrar en la prometedora fase inicial de Vertex, però la realitat era que l'empresa encara no havia produït cap medicament.
  • L'objectiu final de Joshua Boger i els pioners de Vertex no era només la recerca, sinó construir una empresa capaç de competir amb les grans farmacèutiques contra les malalties més difícils, amb una ciència complexa i un màrqueting agressiu.

Estratègies i Enfocaments Científics:

  • Inicialment, Vertex va apostar per una revolució en el disseny de fàrmacs basat en l'estructura, amb l'objectiu de superar el mètode tradicional de descobriment de fàrmacs per selecció aleatòria ("micos amb màquines d'escriure", segons Boger).
  • Aquesta estratègia es basava en la idea de la "clau i el pany": conèixer les curvatures internes d'una proteïna per dissenyar molècules que s'hi unissin i modifiquessin la seva activitat.
  • Un repte particular era el disseny d'inhibidors de proteases, molècules grans i complexes, que Vertex va intentar abordar.
  • Posteriorment, Vertex va reformular la seva estratègia central al voltant de la identificació de famílies de gens, un concepte que Sato i Murcko van anomenar quimiogenòmica.
  • Boger imaginava que la quimiogenòmica permetria a Vertex avançar ràpidament en el descobriment i desenvolupament de fàrmacs, però això requeriria una expansió significativa dels recursos de l'empresa.
  • Aldrich es va preocupar per trobar maneres de finançar aquesta ràpida expansió, ja que augmentava el risc que Vertex es tornés dependent de finançament extern i potencialment vulnerable a una adquisició.

Desenvolupament de Fàrmacs i Assajos Clínics:

  • Vertex va dur a terme experiments preclínics, com l'acord amb Kissei.
  • Una etapa clau era la determinació de la farmacocinètica (PK) d'una molècula, és a dir, què fa el cos humà a un fàrmac després de ser ingerit.
  • Vertex va oferir a Burroughs Wellcome una molècula successora de VX-478 per a que els seus farmacòlegs la provessin en animals i obtinguessin dades de PK.
  • La companyia va tenir problemes amb la patentabilitat de les seves molècules, com en el cas de VX-478, on Searle va presentar una estructura Markush similar.
  • El desenvolupament del VX-950 (posteriorment conegut com telaprevir o Incivek) per al tractament de l'hepatitis C (HCV) va ser un procés llarg i ple de frustracions.
  • El descobriment de BILN-2061 per Boehringer Ingelheim, un inhibidor de la proteasa de l'HCV oralment disponible, va demostrar el potencial d'aquesta estratègia, tot i que va tenir problemes de toxicitat.
  • L'empresa va realitzar assajos clínics per al VX-950, incloent un estudi a Bèlgica que va mostrar una reducció significativa de la càrrega viral en pacients amb HCV quan es combinava amb interferó pegilat.
  • Vertex va col·laborar amb la Cystic Fibrosis Foundation (CFF) per al desenvolupament de tractaments per a la fibrosi quística (CF).
  • El desenvolupament d'ivacaftor (VX-770) i lumacaftor (VX-809) per a la CF va ser un altre focus important.

Aspectes Comercials i Regulatoris:

  • El llenguatge del negoci biomèdic sovint utilitza eufemismes, com referir-se a una malaltia com una "oportunitat de mercat" i a la "utilitat" d'un producte com a "valor", que també codifica els beneficis.
  • John Thomson va advertir dels riscos de la quimiogenòmica sense un soci compromès, argumentant que un enfocament més centrat en àrees terapèutiques específiques, com feien empreses com Merck, podria ser més productiu.
  • Vertex va prioritzar el valor financer i el potencial comercial en la selecció de molècules per al desenvolupament clínic, però també va tenir en compte la identitat personal i corporativa.
  • Matthew Emmens, CEO de Shire PLC, va aportar una valuosa perspectiva al consell d'administració de Vertex, amb experiència a Merck i en la construcció d'empreses farmacèutiques exitoses.
  • Vertex va presentar una sol·licitud de nou fàrmac (NDA) per al telaprevir a la FDA, en un procés accelerat i contrarellotge.
  • La companyia es va preparar intensament per a la reunió pre-NDA amb la FDA i per a la possible reunió del comitè assessor (AdComm).
  • Merck també estava desenvolupant un fàrmac per a l'HCV, boceprevir (Victrelis), i la competència entre les dues companyies era intensa.
  • La FDA va convocar un AdComm per revisar telaprevir i boceprevir.
  • Durant la reunió de l'AdComm, van sorgir preguntes sobre la seguretat del telaprevir, especialment pel que fa a les erupcions cutànies i la possible relació amb l'àcid pirazinoic.
  • Vertex va celebrar l'aprovació del telaprevir amb un esdeveniment i es va preparar per al seu llançament comercial, amb l'objectiu de superar a Merck.
  • La companyia va establir una seu central més gran a Boston, cosa que va ser possible gràcies a la perspectiva de l'aprovació del telaprevir.
  • El llançament d'Incivek (telaprevir) va significar un moment crucial per a Vertex, marcant el seu pas a una empresa comercial sostenible.
  • Vertex també va continuar amb el desenvolupament de teràpies per a la fibrosi quística, amb resultats prometedors per a la combinació de VX-809 i VX-770 en pacients amb la mutació delta-F508.

Reflexions Finals i Visió de Futur:

  • Boger va redactar un memoràndum imaginari de l'informe anual de Vertex Health Inc. de l'any 2038, celebrant el seu cinquantè aniversari i la introducció de noves teràpies per a malalties com l'Alzheimer i el càncer resistent.
  • Aquesta visió reflecteix l'ambició de Boger de construir una empresa duradora i innovadora que impactés significativament la salut mundial.
  • L'autor destaca l'alt estàndard que Vertex s'ha imposat i la seva voluntat de documentar detalladament el seu viatge, amb l'esperança d'aprendre de les errades de les grans farmacèutiques.
  • L'accés de Werth a Vertex, com en el seu llibre anterior, depenia de la revisió del manuscrit per part de persones de la companyia per evitar la divulgació d'informació propietària.

En resum, "The Antidote" narra la complexa i desafiant trajectòria de Vertex Pharmaceuticals des de la seva prometedora fundació fins a la seva consolidació com una empresa farmacèutica amb productes al mercat. El llibre explora les innovacions científiques, les decisions estratègiques, els reptes regulatoris i la intensa competència en la indústria farmacèutica, oferint una visió profunda del món del desenvolupament de nous medicaments.



11 de gener 2024

Com el sector públic i filantròpic va arriscar a la recerca de l'edició genètica

Funding CRISPR: Understanding the role of government and philanthropic institutions in supporting academic research within the CRISPR innovation system 

Sabem que la innovació farmacèutica de l'any 2023 ha estat la primera teràpia aprovada d'edició genètica mitjançant CRISPR. Ara Vertex haurà de pagar una llicència de 100 milions pel cap baix a Broad Institute (Harvard) i al competidor Editas Medicine, per poder comercialitzar-la. 

És un bon moment per preguntar-nos quina ha estat la contribució de finançament públic a la recerca, i per tant si cal considerar fins a quin punt el que s'ha patentat privadament s'ha assolit mitjançant recursos públics.

Això a hores d'ara és complicat de conèixer amb estimacions precises. Però mitjançant la revisió de tots els articles publicats i mirant els reconeixements i agraïments han construït aquest graf que explica prou bé d'on han vingut els recursos per a la recerca, i es veu que fonamentalment venen del govern (punts blaus) i de la filantropia (punts vermells). Aquest és la conclusió del graf referit a Harvard:

The bimodal network model of the Broad/Harvard/MIT system was formed by 28 organizations (12 governmental agencies and 16 philanthropic/charitable organizations) and 111 highly cited papers (14 papers on CRISPR as a biological phenomenon and 97 papers on the development of CRISPR/Cas technologies

 Si cliqueu sobre el gràfic en podreu veure millor el contingut: 


Nota: model de xarxa de cofinançament de la recerca CRISPR/Cas més citada al sistema Broad/Harvard/MIT. Aquesta és una xarxa bimodal de papers i fonts de finançament. La mida dels nodes que representen els articles és una funció del nombre de cites rebudes.
Les vores indiquen quines organitzacions van finançar quins papers. Només els nodes que representen els articles més citats del model de xarxa (més de 500 cites) s'etiqueten amb el seu títol i l'any de publicació i les vores amb llum vermella els relacionen amb la seva organització de finançament.
Els nodes blaus representen agències governamentals, mentre que els nodes vermells representen organitzacions filantròpiques/benèfiques. És important especificar que l'agregació de fonts de finançament està limitada per la informació que els autors proporcionen a la secció d'agraïment dels articles. 

The three clusters are supported by the NIH, which occupies a central position
in the network model, but are cofunded by different sets or organizations. The cluster located in the lower right corner of the network model is formed by papers cofunded by the NIH and the Department of Energy (DoE); a second cluster (upper right corner) is cofunded by a set of philanthropic and governmental organizations; and the third cluster (upper left corner) is cofunded by the Howard Hughes Medical Institute (HHMI) together with a set of U.S. military organizations or programs (Figure 3). There is also an important set of papers exclusively funded by the NIH.
the bimodal network model of the UC system was formed by 15 funding organizations (10 governmental agencies and five philanthropic/charitable organizations) and 117 highly cited papers (59 papers on CRISPR as a biological phenomenon and 58 papers on the development of CRISPR/Cas technologies


In the case of the University of California (UC), the cofunding network model (Figure 4) suggests that the top-cited investigations on CRISPR as a biological phenomenon, which is related to the discovery stage of investigation in which the basis of future technologies are built, were mostly supported by the U.S. Department of Energy and the National Science Foundation. A relatively smaller and less cited set of papers was cosupported by the Burroughs Wellcome Fund together with the National Institutes of Health (NIH; Figure 4). On the other hand, the investigations related to the development of CRISPR/Cas technologies at the UC were mostly supported by the NIH together with the National Science Foundation and the HHMI in two respective clusters of papers (Figure 4). There is also an important set of technological development papers funded by the NIH without the participation of other frequent governmental or philanthropic/charitable funding sources
Doncs aquest és el panorama. Resum, no hi hauria CRISPR si no hi hagués hagut inversió pública i filantròpica a la recerca. Desconeixem la magnitud, però sabem les institucions que hi han participat. Malgrat això, s'ha patentat i per tant a hores d'ara és un bé privat finançat públicament o filantròpicament en bona part. I sobretot això ha passat a l'estadi de la recerca on hi ha més risc, he socialitzat el risc i el resultat ha estat apropiat privadament, una altra volta.


PS. M'ha sorprès el paper dels militars en la tecnologia CRISPR i també del Departament d'Energia.

08 de gener 2024

Els medicaments que venen i els que ja s'han aprovat el 2023

És bo fer una ullada a quins són els medicaments que previsiblement s'aprovaran l'any 2024, i els de Nature diuen que són aquests:

Medicaments per aprovar el 2024

Biologic name

Sponsor

Properties

Indication

Timing

Zolbetuximab

Astellas

Claudin 18.2-targeted mAb

Gastric cancer

January

Lifileucel

Iovance

Tumour-infiltrating lymphocyte therapy

Melanoma

February

Resmetiroma

Madrigal/Synta

Thyroid hormone receptor β agonist

NASH

March

Sotatercepta

Merck & Co./Acceleron

Fusion protein ligand trap for TGF-β superfamily

PAH

March

mRNA-1345a

Moderna

mRNA-based vaccine

RSV prevention

April

Donanemaba

Eli Lilly

Amyloid-β-targeted mAb

Alzheimer disease

Q1

EB-101a

Abeona

Gene therapy with COL7A2 transgene

RDEB

May

Patritumab deruxtecana

Merck & Co.

HER3-targeted ADC

NSCLC

June

Imetelstat

Geron

Telomerase inhibitor

Transfusion-dependent anaemia with MDS

June

Tarlatamaba

Amgen

DLL3 × CD3 T-cell engager antibody

SCLC

June

Fidanacogene elaparvoveca

Pfizer/Spark

AAV-based gene therapy with factor IX transgene

Hemophilia B

Q2

Bentracimaba

Laboratoires SERB

Ticagrelor-neutralizing antibody

Drug toxicity

1H

Crovalimaba

Roche

C5-targeted mAb

PNH

July

Danicopana

AstraZeneca/Alexion

Factor D inhibitor

PNH

July

Midomafetaminea

MAPS

MDMA

PTSD

August

Xanomeline plus trospium

Karuna/BMS

Muscarinic receptor modulators

Schizophrenia

September

Acoramidis

BridgeBio

TTR stabilizer

TTR amyloidosis

December

Marstacimab

Pfizer

TFPI-targeted mAb

Haemophilia A and B

Q4

Afamitresgene autoleucela

Adaptimmune

MAGE-A4-targeted autologous, engineered T cell therapy

Synovial sarcoma

2024


Fig. 1 | 30 years of novel FDA approvals. Annual numbers of new molecular entities (NMEs) and biologics license applications (BLAs) approved by the FDA’s Center for Drug Evaluation and Research (CDER). See Table 1 for new approvals in 2023. Products approved by the Center for Biologics Evaluation and Research (CBER), including vaccines and gene therapies, are not included in this drug count (Table 2). Source: FDA.

Fig. 2 | CDER approvals by therapeutic area. Indications that span multiple therapeutic areas are classified under only one, based on which FDA office and division reviewed the approval application. Sources: Nature Reviews Drug Discovery, FDA.


Fig. 3 | CDER approvals by modality. Small molecules, including peptides of up to 40 amino acids in length, and oligonucleotides are approved as new molecular entities (NMEs). Protein-based candidates are approved through biologics license applications (BLAs). mAb, monoclonal antibody; siRNA, small interfering RNA. Source: Nature Reviews Drug Discovery.

I la notícia de l'any ha estat CRISPR:
Vertex and CRISPR Therapeutics’ exagamglogene autotemcel (exa-cel; Casgevy) especially is the first CRISPR–Cas9-based gene editor to secure a green light from the FDA, winning an approval for sickle cell disease (SCD). Exa-cel is an ex vivo gene-edited cell therapy: blood cells are harvested from patients, genetically modified at the BCL11a transcription factor to re-enable fetal haemoglobin production, and then re-infused into patients. The therapeutically upregulated fetal haemoglobin compensates for the defects in β-haemoglobin that cause the diseases. Clinical data shows that the gene therapy has curative potential, although longer-term data are needed to assess the durability of the effect.

When Harvard Medical School and HHMI’s Stuart Orkin and colleagues discovered the role of BCL11a in fetal haemoglobin production in 2008, it was unclear how to drug the transcription factor. The arrival of CRISPR–Cas9 gene-editing system in 2012 provided a path forward for haemoglobinopathies. The development of the programme was “remarkably fast”, said Orkin. “It is a perfect example of how the ecosystem can work.”

Vertex and CRISPR have priced the one-off treatment at $2.2 million. It also requires a harsh preconditioning chemotherapy regimen, to make room for the edited cells. The therapy will consequently remain out of reach for many patients. “This is not the end game,” says Orkin, who has his eye on next-generation gene editors and small molecules that might be more accessible.
PS. Un breu missatge per aquells que mitjançant la seva recerca "obren la porta" a tractaments i ho expliquen al Telenotícies. No n'hi ha cap d'aquesta llista del 2024 ni del 2023 d'aquí sota que sigui un d'ells, la porta segueix oberta, o potser no hi havia porta per obrir. Millor no haver d'estar sentint això sempre, sense explicar-ne el resultat.
PS. The economist sobre el tema




PS. El llistat de medicaments:

Table 1 | CDER approvals in 2023

Drug (brand name)

Sponsor

Properties

Indication

Lecanemab (Leqembi)a

Eisai/Biogen

Amyloid-β-targeted mAb

Alzheimer disease

Bexagliflozin (Brenzavvy)

Theracosbio

SGLT2 inhibitor

Glycaemic control in type 2 diabetes mellitus

Pirtobrutinib (Jaypirca)

Loxo/Eli Lilly

BTK inhibitor

Mantle cell lymphoma

Elacestrant (Orserdu)

Stemline

ER antagonist

ER-positive, HER2-negative, ESR1-mutant breast cancer

Daprodustat (Jesduvroq)

GSK

HIF-PH inhibitor

Anaemia caused by CKD for adults on dialysis

Velmanase alfa (Lamzede)a

Chiesi

Recombinant α-mannosidase

Non-CNS manifestations of α-mannosidosis

Sparsentan (Filspari)

Travere

Endothelin and angiotensin II receptor antagonist

Proteinuria in primary IgA nephropathy

Omaveloxolone (Skyclarys)

Reata/Biogen

Mechanism unknown, NRF2 activator

Friedrich’s ataxia

Zavegepant (Zavzpret)

Pfizer

CGRP receptor antagonist

Migraine

Trofinetide (Daybue)

Acadia

Mechanism unknown

Rett syndrome

Retifanlimab (Zynyz)a

Incyte

PD1-targeted mAb

Merkel cell carcinoma

Rezafungin (Rezzayo)

Cidara

Echinocandin antifungal

Candidemia and invasive candidiasis

Leniolisib (Joenja)

Pharming

PI3Kδ inhibitor

Activated PI3Kδ syndrome

Tofersen (Qalsody)

Biogen

SOD1-targeted ASO

SOD1 amyotrophic lateral sclerosis

Pegunigalsidase alfa (Elfabrio)a

Chiesi

PEGylated recombinant α-galactosidase Α

Fabry disease

Fezolinetant (Veozah)

Astellas

Neurokinin 3 receptor antagonist

Hot flashes caused by menopause

Perfluorohexyloctane (Miebo)

Bausch + Lomb

Semifluorinated alkane

Dry eye disease

Epcoritamab (Epkinly)a

Genmab/AbbVie

CD20 × CD3 T-cell engager

DLBCL and high-grade B-cell lymphoma

Sulbactam, durlobactam (Xacduro)

Entasis

β-lactam antibacterial plus a β-lactamase inhibitor

Hospital-acquired and ventilator-associated bacterial pneumonia caused by susceptible ABC

Nirmatrelvir, ritonavir (Paxlovid)

Pfizer

SARS-CoV-2 main protease inhibitor plus a CYP3A inhibitor

Mild-to-moderate COVID-19

Flotufolastat F18 (Posluma)

Blue Earth

Radioactive diagnostic agent

PET imaging in prostate cancer

Sotagliflozin (Inpefa)

Lexicon

SGLT1/2 inhibitor

Heart failure

Glofitamab (Columvi)a

Genentech

CD20 × CD3 T-cell engager

DLBLC or large B-cell lymphoma

Ritlecitinib (Litfulo)

Pfizer

JAK3 inhibitor

Alopecia areata

Rozanolixizumab (Rystiggo)a

UCB

FcRn-targeted mAb

AChR- or MuSK-antibody-positive gMG

Somatrogon (Ngenla)a

Pfizer

Human growth hormone analogue

Growth hormone deficiency

Nirsevimab (Beyfortus)a

AstraZeneca

RSV F protein-targeted mAb

RSV lower respiratory tract disease

Quizartinib (Vanflyta)

Daiichi Sankyo

FLT3 kinase inhibitor

AML

Lotilaner (Xdemvy)

Tarsus

Ectoparasiticide

Demodex blepharitis

Zuranolone (Zurzuvae)

Sage

GABAA receptor PAM

Postpartum depression

Avacincaptad pegol (Izervay)

Iveric/Astellas

C5-targeted aptamer

Geographic atrophy secondary to AMD

Talquetamab (Talvey)a

Janssen

GPRC5D × CD3 T-cell engager

Multiple myeloma

Elranatamab (Elrexfio)a

Pfizer

BCMA × CD3 T-cell engager

Multiple myeloma

Palovarotene (Sohonos)

Ipsen

Retinoic acid receptor agonist

Fibrodysplasia ossificans progressiva

Pozelimab (Veopoz)a

Regeneron

C5-targeted mAb

CHAPLE disease

Motixafortide (Aphexda)

Biolinerx

CXCR4 inhibitor

Hematopoietic stem cell mobilization for autologous transplantation in multiple myeloma

Momelotinib (Ojjaara)

GSK

JAK1/2, ALK2 inhibitor

Myelofibrosis in adults with anaemia

Gepirone (Exxua)

Fabre-Kramer

5HT1A receptor agonist

Major depressive disorder

Cipaglucosidase alfa (Pombiliti)a

Amicus

Recombinant α-glucosidase

Pompe disease

Nedosiran (Rivfloza)

Novo Nordisk

LDHA-targeted siRNA

Primary hyperoxaluria type 1

Etrasimod (Velsipity)

Pfizer

S1P receptor modulator

Ulcerative colitis

Zilucoplan (Zilbrysq)

UCB

Complement C5 inhibitor

AChR-antibody positive gMG

Bimekizumab (Bimzelx)a

UCB

IL-17A/F-targeted mAb

Plaque psoriasis

Vamorolone (Agamree)

Santhera

Corticosteroid

Duchenne muscular dystrophy

Mirikizumab (Omvoh)a

Eli Lilly

IL-23-targeted mAb

Ulcerative colitis

Toripalimab (Loqtorzi)a

Coherus

PD1-targeted mAb

Nasopharyngeal carcinoma

Fruquintinib (Fruzaqla)

Takeda

VEGFR1/2/3 kinase inhibitor

Colorectal cancer

Taurolidine, heparin (Defencath)

Cormedix

Thiadiazinane antimicrobial plus an anticoagulant

Incidence of catheter-related bloodstream infections

Repotrectinib (Augtyro)

Bristol Myers Squibb

ROS1 and TRK kinase inhibitor

ROS1-positive NSCLC

Efbemalenograstim alfa (Ryzneuta)a

Evive

Recombinant leukocyte growth factor

Neutropenia

Capivasertib (Truqap)

AstraZeneca

AKT kinase inhibitor

Breast cancer

Nirogacestat (Ogsiveo)

Springworks

γ-secretase inhibitor

Desmoid tumours

Iptacopan (Fabhalta)

Novartis

Complement factor B inhibitor

Paroxysmal nocturnal haemoglobinuria

Birch triterpenes (Filsuvez)

Chiesi

Mechanism unknown

Epidermolysis bullosa

Eplontersen (Wainua)

Ionis/AstraZeneca

TTR-targeted ASO

hATTR with polyneuropathy