February 15, 2020

Trade-offs in algorithmic clinical decision making

On the ethics of algorithmic decision-making in healthcare

Great article.
Clinicians, or their respective healthcare institutions, are facing a dilemma: while there is plenty of evidence of machine learning algorithms outsmarting their human counterparts, their deployment comes at the costs of high degrees of uncertainty. On epistemic grounds, relevant uncertainty promotes risk-averse decision-making among clinicians, which then might lead to impoverished medical diagnosis. From an ethical perspective, deferring to machine learning algorithms blurs the attribution of accountability and imposes health risks to patients. Furthermore, the deployment of machine learning might also foster a shift of norms within healthcare. It needs to be pointed out, however, that none of the issues we discussed presents a knockout argument against deploying machine learning in medicine.