Monday, December 6, 2010

Referència clau

A limited-sample benchmark approach to assess and improve the performance of risk equalization models

Quan algú es planteja compensar capitativament a una població ja sap que ha d'ajustar pel risc d'emmalaltir que tingui. El problema és quin és el cost legítim i aleshores la mitjana del cost poblacional es premia com a referència. Sabem que aquest opció és errònia i que penalitza els comportaments més eficients (efecte ratchett i regression to the mean amb el pas del temps). Al JHE podeu trobar l'article que proposa un esquema suggerent i aplicable per a resoldre un sistema de pagament capitatiu. Una referència clau a tenir en compte.
El resum:
A new method is proposed to assess and improve the performance of risk qualization models in competitive markets for individual health insurance, where compensation is intended for variation in observed expenditures due to so-called S(ubsidy)-type risk factors but not for variation due to other, so-called N(onsubsidy)- type risk factors. Given the availability of a rich subsample of individuals for which normative expenditures, YNORM, can be accurately determined, we make two contributions: (a) any risk equalization scheme applied to the entire population, YREF, should be evaluated through its performance in the subsample, by comparing YREF with YNORM (not by comparing YREF with observed expenditures, Y, in the entire population, as commonly done); (b) conventional risk equalization schemes can be improved by the subsample regression of YNORM, rather than Y, on the risk adjusters that are observable in the entire population. This new method is illustrated by an application to the 2004 Dutch risk equalization model


PS. Aquesta altra referència sobre el mateix tema al JHE no m'ha convençut "Capping risk adjustment?" i aquesta no gaire "Risk adjustment in health insurance and its long-term effectiveness". Ho rellegiré a veure si li sé trobar el què.
Trobareu alguns altres papers a Risk Adjustment Network

No comments:

Post a Comment